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SUMMARY X
1960
This paper presents a study of the nature of the 24 hour
si;'nchronous satellite perturbations due to the earth's trisxiality.
Equations representing the drift due to these perturbations are
developed. Tt is found that the radial drift is linear and the
longitudinal drift is parabolic. Both have superimposed on these
primary curves, oscillations with one day periods. This analysis
also verifies the existence of only two dynamically stable points,
where no drift due to the earth's triaxiality will occur. These

are located at opposite ends of the equatorial minor axis. d?
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LIST OF SYMBOILS

coefficients of linearized perturbation equations

coefficients of the transient solution for drift

radial, longitudinal and latitudinal forces
acting on a satellite

dimensionless gravitational constants
a dimensionless constant related to Joo

satellite mass

radial distance from the center of the earth
to the satellite

synchronous radius

operator equivalent of 4
4aT

time
earth's gravitational potential

angle between Greenwich (zero longitude and the
equatorial minor axis

coefficients of the characteristic equation for
radlal and longitudinal drift

angle between the equatorial minor axis and the
projection of the satellite radius vector

initial value of ¥

transient solution for drift

inertial longitude of satellite

inertial longitude of equatorial minor axis
inertial value of ép
earth's rate of rotation
Enerh

gravitational constant
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geographic longitude
dimensionless time

irertial latitude of satellite
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INTRODUCT ION

Tt has been shown (Refs. 1 and 2) that there are only two dynamically stable
points for 24 hour synchronous satellites. These are in the vicinity of 57 east
longitude and 123° west longitude in the geographic system. Satellites posi-
tioned at locations other than these will drift toward the nearest point of
stability. In order to obtain maximum global coverage using the synchronous
communications satellite concept, it is necessary to maintain at least three
satellite systems, which are equally spaced about the equator, in operation.

This means that drift correction is necessary. General perturbation studies
have shown the disturbances of satellite orbits to be caused primarily by the
potential field of a triaxial earth. The indicated influence of the lunar and
solar gravitational fields is small in comparison. It is the purrose of this
paper to determine the nature of the 24 hour synchronous satellite perturbations
due to the earth's triaxiality.

DEVELOPMENT

REFERENCE SYSTEM AND DEFINITIONS

An inertial reference system with axes X, Y, and Z as shown in Figure 1
is used in this paper. The origin and Z axis of the coordinate system coincide
with the earth's center and polar axis respectively. The X-Y plane coincides
with the equatorial plane and completes a right hand coordinate system. It is
found convenient to specify the satellite position by the spherical coordinates
8, $ and r. The earth's equatorial minor axis lies at an angle,

96 = OEO + éet (l)

from the X axis, where

8 = the initial angle between the X axis and the equatorial minor
° axis
ée ; the earth's rate of rotation about its polar axis
and, t = time

From Figure 2 the relationship of inertial to geographic longitude is:
6 = 6+ A SN (2)
where A = geographic longitude

and, ;3 = the angle between Greemwich (zero longitude) and the equatorial
 minor axis and is approximately 123° west longitude

Further the angle between the equatorial minor axis and the projection of the
satellite radius vector, r, into the equatorial plane is given by

Y= A 88 (3)
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EQUATIONS OF MOTION

. The components of acceleration in terms of r, ©, and ¢ are:
oo .2 2 %2
Q.= F-récos @ -nrd (&)

g = 'Fc,o—swﬁ Zd;(rzé cosz¢) (5)
ay =+ j‘%(rzfé) + récos@ sing (6)

If one assumes the influence of the lunar and solar gravitation fields to
be small, the force components are determined from the earth's gravitational
potential. The most recent formulation of this potential is:

2
U = .. S M(SS”‘2¢ - 1)

r 2 r3
2
+ 3224 Ro cohcos 28 (7)
where rs
. M = Universal gravitational constant
R, = Mean equatorial radius of the earth

and JzO and J22 are dimensionless constants whose values are (Reference 2):
Jop = 1.082 X 1073
Jop = -5.35 x 107

It is seen that Eq. (7) includes one each of the zonal and sectarial harmonics.

All higher order harmonics are assumed negligible.
From Eq. (7) the force components are: ,

- 2
. - 9J2;‘(R§ COSz¢ cos 2} (8)
‘ 2
F‘e -_-dc_;r%__'é.-}g— = mi|- st—ﬁ:{R‘? COS'¢ Sin 25) )

o | o
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and, Fg = m-r‘l— 3¢ - M- 3‘/2:4‘(& sing cos g
. * 2
| - 6‘/3;:‘/?" cos @ sind cos 2 (10)
where |

m = Mass of the satellite
equating the corresponding acceleration and force expressions from

Egs. (4), (5), (6), (8), (9) and (10) the following equations of motion are
obtained.

Z
F - ré“cos’¢ -rg” = -4 + *—————3"221"1& (3 sin*@

2
—1) - Q‘Q’FZ;“& cos®d cos2) ()

® Wf—(r‘é cos ¢) - %z—j#—@ codd gin 20 (12)
3%_—( ¢) + ré°cosdsing =—Msm¢cos¢

Yl

and,

Joz i R :
e 2:4 = cos¢ S/n¢cos 2% (13)

General perturbation studies have indicated the latitude perturbations to be
periodic and having a magnitude of less than one degree, For purposes of this
report, latitude is assumed equal to zero at all times. Therefore, Eq. (13)
is eliminated and the analysis becomes two dimensional. Egs. (11) and (12)
reduce to:

_ A :3«/2¢>1¥'ﬁ13 Oaz 4R

ré + 2r6 =- ——-z——é"/‘;“'?" Sith 2% (15)

-3 -
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Since the primary concern is with devmtions of a satellite from a synchronous
orbit, it becomes advantageous to linearize Eqs. (14) and (15) in the vicinity
of this orbit. Perturbations about the synchronous orbit will be radial, Af,
and longitudinal, A¥. Now define:

e =6 +¥ + A (16)
¥ = ¥ + A¥ (17)
r = g +A4Fr (18)

where )‘o = the desired longitude difference between the equatorial minor
axis and the satellite position

and, rg = syncf:ronous radius

Substitution of Eqs. (16), (17) and (18) into Eqs. (14) and (15)

and division by /g éez yields:
L e
- g )
| - i‘gi%és;i:(l -4 AT:)(cos 2% - 20% sm2)‘,,) (19)
and, —%AB‘ + 2 ‘5;(%)
- ngzré:s@'z(l -5 %‘)(sm 2% +24h¥cos 23:,)(20)

vhere small angle approximations have been made and terms of second order and
greater have been neglected. A dimensionless time is now introduced as:

(21)



. In terms of this dimensionless time, Eqs. (19) and (20) reduce to:

2
4, —’,is‘f) - c(—%s—r)— 24 4y - Day = A (22)
2
22%,(%)-,:(%{-)+ %,_AX‘ + EA¥ =8B (23)
where 2
4R iy

il - gy - SgE st @

z
B= - %ﬁé’ism 2% (25)
C=1+ 24. + 6_‘/2_.;'£{£°_z + 36J22“F°2 606'23( (26)

e T TRt Tarr °
<
D= %‘%ésmz&, (27)
€ 'S8 '

2sz Ry

® E = l-—é%zfg,—"—coszsf, (28)
€'S

2

and F = 30:'{2;?3’ sin 2% (29)
(N

By using operater notation, the variables of Eqs. (22) and (23) can be separated.
The result is:

4 2 ar
(8% + ByS° +B,5 +8,) 2 = AE + ED (30)
and, (sh + By s@ +,eas +53)AB‘ = AF - BC (31)
where S =4d
dT (32)
ﬂ.{ =4 -C+E
Bz =2 (D - F) (33)
and, Bs = - CE-DF (34)



‘Examination of Eqs. (24) thrv (29) shows the following to be very good approx-

‘ imations.

ATO (35)
R 2
BT -6l (‘F:) sin 2% (36)
[y
c T 30 (37)
2 2
D T 18dss (-;-) sin 2% (38)
S
E T 212 J.» %fcos 2% (39)

and, F ¥ 30 Jzz (r) sin 24 (40)

S

Further, it is seen that:

® B, % 1.0 (42)
B T 24 Kz SIN 2, (42)
Bs £ 36 K,, cos2¥, (43)
AE + BD £ O (bk)
AF - BC = -18K,, sin2Y, (b5)

R 2
where K22 =.-J22 &?)

. (30) and (31) then become:

[s* +s*+ (24K,, Sin 2¥) S + (36 K,z coszz‘)] ar

= O (k)
s

[$9+ 8% + (29Kasin2%)S + (36K coszb‘,)] oy
= —18KZZ Sin ng

(47)
-6 -



. It is seen that the characteristic equation for both AX‘ and -AF.Y: is:
S

O = 8%+ B S5 +B,5 +84 (48)

Extensive numerical analysis of Eq. (48) for the values of Ae, 52, and 63

involved, has shown

JaY

]

[s* + B +83) (S - @5 +2) (49)

to be the solution as a product of two quadratics. The individual roots are:

Sy = 12H,, 1N 2% + (50)
S, S 12Kyp5n28 ~y (51)
(52)
Sy = ~I2K,, sin2¥, +/-36/(2260523,‘,
® S¢ = =12k, sin2¥, - (-3¢ K,, cos 2Y, (53)

For 0° € X <& 145°, the characteristic solution is:

A= e(zzkzzs'"Z&)?(CIS/n? + Co cosZ‘)

O R

+Coe (-12 Kaz S1N2¥% ~={-36 Kzo cOS 2%) (4 (5h)

For 45° & ¥, € 90, the characteristic solution is:

A = ekzzkzzsmzz‘a?(q SiInT + G, Cos?:)

® -7-




v e 12K smza:,)?(:cs sin3ehacosail?

+ Cy Cos|-36k,,cos28' T (55)

The exponential terms of Egqs. (54) and (55) have very large time constants
and can, therefore, be replaced by unity. Also, the transcendental functions
corresponding to the C, and C, coefficients of Eq. (55) involve extremely
small angles and can bé replaced by small angle approximations. The solution
for all values of ), then becomes:

A = (,8nT + Cyco8T + C5T + Cg (56)

In order to evaluate the unknown coefficients, the initial conditions must be
determined. It is assumed that a perfect injection into a synchronous orbit
has been achieved. This implies:

AV, = Ar, =AY, =A% = O (57)

Substitution of Eq. (57) into Egs. (22) and (23) yields:

AY, = A%, = O (58)
dz
ﬁzmﬁ, = 6Ky, SIn2¥, (59)
3 avr
and, 2%5(‘—’.::;, = 12 K,, sin 25 (60)

Evaluation of Eq. (56) and its derivatives for the initial conditions gives
for the characteristic solutions:

(aY), = 6 Ko sin28 (2 - cosT) (61)
and, (—AF.’) =12 K, sinzxc(?‘ -Sin T) (62)
S/c
. aAr
There is no particular (steady state) solution for e
S
For AY , the particular solution is:
(ay) 5 =~ (9K sinz¥) T2 (63)

-8 -
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Finally, the total solutions for AY and AP, respectively, are:

Ay =18 6k, sin2(1 - cos gt -1.587¢) (6k)
ar = Y‘S'IZKzzst)‘,(éEt - Sn éei‘) (65)

where real time has been substituted. As shown, the unit of Q¥ is degrees
and the unit of AV corresponds to that of Yy .

RESULTS AND DISCUSSION

For a truly synchronous condition to exist, the forcing functions of the
coupled perturbation equations, Egs. (30) and (31), must be zero. It follows
immediately that A and B given by Egs. (24) and (25), which are repeated below
as Eqs. (66) and (67), must be zero.

- A _ 3o Ro _ 9Jz2 4 RS
A=1 - 5'?,3 Té?—r's? —é;%?—COS Zx'o (66)

p-. 6Ja2ih g pog (67)

& rs

Obviously, for Eq. (67) to be zero, sin 2%, must also be zero. This gives
four values of ¥, (09, 90°, 180° and 270°) at which a truly synchronous condi-
tion exists. Blitzer (Ref. 3) has shown that the locations % = 0° and 180°
represent dynamically stable points while the other two points are statically
stable. The value of P g Which makes Eq. (66) zero at the dynamically stable
points is found to be:

r‘s = 22752.292 nautical miles (68)

Shown as Figures 3 and 4 are plots of A¥ and OY , Egs. (64) and (65),
as functions of time for various values of ¥% . It is seen that the satellite
motion is symmetrical about ¥, = 4s°, For the cases shown, the drift was also
determined by numerical integration of Eqs. (11), (12) and (13). Agreement of
the two methods was very good within the limits of the linearizations used in
the perturbation equations. These limits are:

Ay << Iy (69)
AY < 5° (70)



The 1limit on AY¥ is established by the limits of the small angle approxi-
mations which were used. Figure 5 is a plot of the differences between the two
methods of solution for ¥ = 45° where the drift megnitudes are maximum. It
shculd be realized that for longer drift periods Egs. (64) and (65) represent
only short time period drift. For example at values of ¥ in the vicinity of
90° there is very little shE¥F&'T#E. But since ¥, = 90° is only statically
stable, it follows that long time period drift will be present.

It is noted that if the oscillations are ignored, Egs. (64) and (65) are
identical to equations developed by Frick and Garber (Reference 2). The period
of the oscillation in both cases is:

PERIOD = %E = 1 day (71)

When AY¥ is expressed in degrees, the maximum amplitude ol its oscillating term
is:

Y3
AMPLITUDE = ‘%-GJZ,_(%) = .4208 x 10" % deg (72)

The amplitude of the oscillation in degrees is very small. However, in terms
of linear position this amplitude becomes

2
AMPLITUDE = Q'GJZZ(%) = 101.5 ¢ (73)

The maximum amplitude of the Al oscillating term is:
AMPLITUDE = Q-zszz(% = 203 £t (74)

It therefore seems that the oscillation terms are of sufficient magnitude to
warrant consideration in drift correction studies.

Figure 6 shows the nature of the drift in each of the four geographic
quadrants. The symmetry is readily apparent. It is pointed out that the
magnitudes of drift are equal in all quadrants. Only the directions are different.

CONCLUSIONS

The purpose of this paper was achieved in that equations were developed
which accurately determine drift for short time periods. Consequently the
following conclusions can be stated.

1. The only locations at which truly synchronous conditions exist are
in the vicinities of ¥, = 0° and 180° at an orbit radius of 22752.292
nautical miles.

2. A realization of the presence of oscillatory motion in both the

longitudinal and radial directions was achieved. This oscillation is
of sufficient magnitude to warrant consideration in drift correction studies.

- 10 -



3. The symmetrical nature of the drift in the four geographic quadrants
is such as to greatly reduce the analysis of different longitudes as
potential satellite locations.
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